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Sandpile model with activity inhibition
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A sandpile model is studied in which bonds of the system are inhibited for activity after a certain number of
transmission of grains. This condition impels an unstable sand column to distribute grains only to those
neighbors that have toppled less thartimes. In this non-Abelian model grains effectively move faster than
the ordinary diffusionsuperdiffusion. A system size dependent crossover from Abelian sandpile behavior to
a new critical behavior is observed for all values of the paranmatdiS1063-651X97)51111-1

PACS numbg(s): 05.40:+j, 05.70.Jk, 05.70.Ln

The concept of self-organized criticali(OQ was intro-  threshold valuén,. Such a column becomes unstable only if
duced to describe how a system, starting from an arbitraryhe numben; of nearest-neighbor sites that have toppled less
initial condition may evolve to a scale free critical state fol- than a preassigned cutoff number within the same ava-
lowing some specific dynamical rules while under the actiorlanche is found to be nonzero. An unstable column immedi-
of repeated external perturbatiofis]. Naturally occurring ately topples and distributes one grain each to all the
physical phenomena like sandpiled, forest fires[3], river ~ neighbors:h;—h;+1 (j=1 to n;). The sand column de-
networks[4], earthquakeg5], etc. are argued as systems creases by the same amoumt:—h;—n;. If n;=0, the sand
showing SOC. To demonstrate the idea of SOC a simpleolumn does not topple and its height, though greater than
model known as the “sandpile” model was introduced in h, is considered stable. In an avalanche sites can topple a
which a stochastically driven cellular automata evolves unimaximum ofm times. This implies that in the limit ah— oo
der a nonlinear, diffusive, self-organizing mechanism lead-our model converges to ASM. Recently a stochastic sandpile
ing to a nonequilibrium critical statil]. model has been studied in which sand columns having

At present many different versions of the sandpile modeheights greater than the threshold are also considered stable
are available. However, precise classification of varioug14].
models in different universality classes in terms of their criti-  One unit of time within an avalanche consists of the fol-
cal exponents is not yet fully complete and still attracts mucHowing intermediate stepsi) a list of all sites wherdn;>h,
attention[6]. Among the different models most widely stud- is made,(ii) n; values are calculated for each site(iii) all
ied is the Abelian sandpile modéASM) in which many sites with nonzerm; values are toppled in parallel.
analytical [7] as well as numerical8] results are known. We first consider the case where the cutoff in the toppling
Some efforts have also been given towards the analyticalumberm=1. Here the toppling front moves outwards and
calculation of avalanche size exponefi®10]. Second, a grains always jump only in the outward direction and do not
two-state sandpile model with stochastic evolution rules wasall back. Therefore, compared to the random walk analogy
also studied 11] that was initially thought to belong to the for the movement of the grains in ASIA5] in our model
same universality class as that of ASM1,12 but later grains move faster than diffusing particles. This is indeed
claimed to be differenf13]. reflected in the average cluster siZs)~LPs, where

We consider a situation in which an intermediate timeg,=1.62 (reported below This implies that the displace-
scale is associated with every bond of the system. Each bonglentsR of the grains in our model grows with tim& as
allows only a certain number of grains to cross from its oneR~ 7" with »=1/1.62=0.62, which is faster than diffusion
end to the other and after that it has a dead time and cann@superdiffusion.
support any further traffic until a new avalanche starts. This Zhang had studied a scaling theory of the sandpile model
dead time is much greater than the time scale of avalanchia which the toppling front grows as al¢ 1) dimensional
propagations but much less than the input rate of grains. Weurface in thed dimension and multiple topplings were ig-
call this model as the “sandpile model with activity inhibi- nored[16]. Since, in SMAI, a single toppling front moves
tion” (SMAI). outward and multiple topplings are forbidden for=1, we

Similar to different sandpile models we also define ourexpect that SMAI may be a correct realization of Zhang’s
model on a regular lattice with open boundary. Non-negativeheory[16].
integer numberst(;) assigned at the lattice sites represent Unlike ASM our model turns out to be non-Abelian. Dif-
the heights of the sand columns. Sand grains are added ®irent steady state configurations are obtained on dropping
randomly chosen sites by increasing thevalues by unity:  grains at the same locations but following different se-
hi—h;+1. The possibility of a sand column becoming un- quences. On a stable configuration in &2 cell two grains
stable arises only when the heightbecomes greater than a are dropped at two sites using different sequences. Different

final states are obtainddig. 1). Non-abelianity is effective

only when avalanche cluster sizes are larger than 1.
*Electronic address: manna@niharika.phy.iitb.ernet.in A forbidden subconfiguratioFSQ in ASM is defined as
"Electronic address: giri@niharika.phy.iitb.ernet.in the subset of connected sites for which at each site the height
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112 ways: (i) the total number sites that cross the thresholu.

0l 2 (either toppled or not, both countedi) the lifetime of the
avalanche t), and(iii ) the linear extent or the radius)( of

the avalanche. Sincg t, andr are the three different mea-
surements of the same random avalanche cluster, they are
(b) necessarily dependent variables. These quantities are as-
sumed to depend on one another sast”sr~t"r and

FIG. 1. Non-Abelian property of the sandpile model is shown onS~ s @nd are connected by the relation= v ;s -
a 2x2 cell. On the same initial stable configuration two grains are 10 estimate the exponentgs and y,, we measure the
added at two different sites but in different orders. Different final@valanche size and avalanche radiusat every time step
stable configurations are obtained. during the progress of each avalanche. The total number of

topplings up to time gives the intermediate sizewhere as
is less than its coordination number in the subg@t In the size of the smallest square that encloses the cluster gives
SMAI also two neighboring sites whose heights are bottthe intermediate radius. We estimate ys=1.64 and
zero (0—0) will never occur in the steady state because ofyy=0.83. Since the avalanche clusters are quite compact
the same reason as in ASM that if one topples the other sitend have only few small holes it is justified to assume that
will receive one grain. Similarly a height configuration like ¥rs=2. These values are consistent to one another.
(0—1—0) is also an FSC. In fact, all the FSC’s defined for ~We assume the finite size scaling forms for the probability
ASM are also forbidden here, and a recurrent configuratiolistribution functions as
must burn completely. However, the SMAI steady state al-

NI—‘\@

lows many more configurations than in ASM, for example, P(s) s 7sf S P(t) ~t—7tf,| —
with heights 4 or above. These states do not occur with equal (s)~s "fs Los|’ (t) o)
weights.

To use the rotational symmetry of the system the sandpile ;
is grown with h,=3 within a circular region of radius P(r)—vr_Trfr(—)_ (1)
R=(L—1)/2 placed on a square lattice of siz& L. In the L7

steady state starting from the boundary the average height . . o
grows quickly radially towards the center following a power Consequuently the cumulative  probability  distribution
law: (h(r))=A—B(R—r)?, wherer is the radial distance F(x)=/; ‘P(x)dx varies as<'” "x. However, in the case of
measured from the center. We estimate2.3904B= 7.81, 7,=1, the variation should be in the forf(x) =C—In(x).
and §=0.75 forL = 1025(Fig. 2). The average height per We plot the data of(s) in two different ways. In Fig. 3
site is found to depend oh, which on plotting with 11 we plot F(s) vs s for system sized = 65, 257 and 1025
extrapolates to a value 2.3840 in the limitlof>«. Similar ~ using a log-lin scale. Presence of humps in the |artait is
analysis yields the fraction of sites with different column visible for bigger system sizes, which reflects the effect of
heights are approximately 2104 (h=0), 0.2421 the finite system size on power-law distributions. However,
(h=1), 0.3059 h=2), 0.3404 h=3). Beyondh=3, this in the intermediate region curves are reasonably straight, in-
fraction decreases approximately exponentially as-exi, dicating that the exponent is likely to be 1. We further plot
wherea=1.64 and adds up to a total of 0.1118. F(s)s™s(M) 1 with s on a log-log scale and tungy(L), the
The size of the avalanche is measured in three differengffective 7, exponent for the system side, such that the
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FIG. 3. Log-lin plot of the cumulative probability distribution FIG. 5. Scaling plot of the cumulative radial distribution func-
F(s) for the three system sizés=65, 257, and 102%rom left to  tion F(r). Plot of F(r)L%%% vs r/LL%8 shows the data collapse for
right). The straight portions of the curves in the intermediate re-the system sizek =65, 257, and 1025.
gions indicates that, is likely to be equal to 1.

. . . . s 1=ys(1—1), 7 —1=vy,(7—1),
curves become horizontal in the intermediate range. @il
three curves collapse nicely when the abscissa is scaled as

sL~1%2 which implies thatr¢=1.62. We show in the Fig. 4 1= yslnm L), @

that ther§(L) ve/xlues very closely }‘it to a straightl line when These equations imply that if one of the exponentsr, or
plotted withL ™. It seems thal. ~* may be the right lead- 7 is equal to 1, the rest are also equal to 1, irrespective of
ing correction to scaling. The fitted straight line when ex-the values of they exponents. Our estimates for the different
trapolated tol — gives a value of 1.016 fors. Similar  ; exponents are very much consistent with these equations.
analysis for the lifetime distribution also leads us to concludgye also observe that the value af~1 agrees very well
that ;=1.02, 0;=0.98. The radius distributioR(r) is cal-  \jth zhang’s resultrs=2(1—1/d) for d = 2[16].

culated in a different way: the probability that a site at a \ye also assume that the average values of andr vary
distancer from the center of mass of the avalanche clustefyith the system size. as (s(L))~L5s, (t(L))~L?, and
belongs to the cluster. In Fig. 5 we show a scaling plot( )y~ LA we plot(s(L)} vsL on a log-log scale for. =
F(r)L°*° againstrL =% using a log-lin scale for different 33 65 129 257, 513, and 1025. Slopes between successive
system sizes. Here we see a much better straight part in the)inis are plotted with. ~2 and extrapolated to the—

intermediate region. We conclude a valuerp=1. _limit giving Bs=1.61. Similar analysis giveg,=0.96 and
The distribution functions follow relations like B,=0.82.

P(s)ds~ P(t)dt that imply following scaling relations,

1.3 . : ; 10° i
104 E 4
1.2 . s
A10° .
=
=) 4
=) ¥
e 10° ¢ 5
1.1 .
10' -
100 1 i1 L
10 ‘ , ‘ , 10 10° 10°
0.0 0.1 02, 03 0.4 05 L
L /4

FIG. 4. Plot of r4(L) for different system sizes =33, 65, 129,
257, 513, and 1025 with =4, A direct straight line fit gives =
1.016 in theL — oo limit.

FIG. 6. Plot of(s(L)) versusL for m = 1, 2, 4, and 8 of SMAI

behavior to SMAI takes place.

(solid lineg and for ASM (dot dashed line For each value ofm
there is a threshold system sizet which the crossover from ASM
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Using the scaling forms in Eq1) we get following scal- However for bigger system sizes the cutaffwill have more
ing relations for B exponents as prominent effects. Therefore, for eaohvalue there should
Bs=042—75), Bi=0y(2—7), and B,=0,(2— 7). With be one particular system size wherg the crossover takes _pIace
our measured values @, o, and r these relations are ap- from ASM to non-Abelian behavior. The crossover size
proximately satisfied. We set errors of 0.05 to all our mealbc™~M IS observed. We expect that for any value if one
sured exponents. works in systems larger than the crossover size one should

. get the same set of exponents as those in the case-ofl.
Next we study the case when there is a cutoff for the To summarize, we studied here a new sandpile model

toppling numbemm=>1. The average cluster siZ8(L)) IS \yhere honds of the system relax after a certain number of
plotted withL on the log-log scale in Fig. 6 fan=1, 2, 4, transmission of grains. This limits a site to topple a maxi-
and 8. We see that all curves are parallel straight lines withhum of m times within the same avalanche. Based on the
slopes approximately 1.61 for large system sizes. Howeveresults of detailed numerical studies using improved algo-
for small system sizes all of them bend and become part afithms we claim a crossover from ASM behavior to a new
the same straight line. Then we plot on the same figure theritical behavior at a particular size of the system whose
(s(L)) data for ASM. We get a straight line with a slope magnitude depends on the valuerof

~ 2 that almost overlaps with the bend portions of the curves \ye acknowledge with thanks D. Dhar and V. B. Priez-
for different m values. We explain this by noting that for zhev for many useful discussions and suggestions. D. G.
every m value our model behaves as the ASM for smallgratefully acknowledges financial support from the Indo-
system sizes. In small systems the number of avalanchdsench Centre for the Promotion of Advanced Resedifeh
where sites will topple more tham times are very few. CPAR).
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